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Abstract. Using the formal analogy between the Dick superstring inspired model and the problem of the
building of an Eguchi–Hanson metric in 4D N = 2 harmonic superspace (HS), we derive a general formula
for the quark–quark interaction potential V (r) including the Dick confining potential. The interquark
potential V (r) depends on the dilaton–gluon coupling and may be related to the parameterization of
confinement by the quark and gluon vacuum condensates. It is also shown how the axion field may be
incorporated in agreement with 10D type IIB superstring requirements. Others features are also discussed.

1 Introduction

The dilaton φ and the axion χ are scalar fields predicted
by superstring theory [1]. Both of them arise in a natural
way in the massless spectrum of 10 dimensional (10D)
type IIB superstring theory [1,2] and its lower dimensional
compactifications. In the language of 4D gauge theory of
the field strength Fµν and its dual F̃µν , φ and χ have very
special couplings. The dilaton φ couples to the gauge fields
through a term exp(φ)F 2 and the axion χ couples to the
topological term. The φ and χ fields play a central role
in superstring dualities [3], F -theory compactifications [4]
and in the derivation of the exact results in 4D N = 2
supersymmetric gauge theories [5].

Recently it was observed in [6] that a string inspired
coupling of a dilaton φ to the 4D SU(Nc) gauge fields
Aµ = T aAaµ, with T a the (N2

c − 1) SU(Nc) generators,
yields a phenomenologically interesting potential V (r) for
the quark–quark interactions. Following [6,7], this poten-
tial is obtained as follows: First we start from the following
model for the scalar field–gluon coupling

L(φ,A) = − 1
4G(φ)

F aµνF
µν
a − 1

2
(∂µφ)2

+ W (φ) + JaµA
µ
a . (1)

Then we choose G(φ), the coupling of the scalar field φ
to the SU(Nc) field strength Fµν , and the interacting la-
grangian W (φ) as

G(φ) = const.+
f2

φ2 ,

W (φ) =
1
2
m2φ2, (2)
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where the parameter f is a scale characterizing the
strength of the scalar–gluon coupling and m is the mass of
the scalar field φ. Next we consider the equations of mo-
tion of the fields Aµ and φ and solve them for static points
like the color source of the current density Jµa = ρaη

µ0.
After some straightforward algebra, we find that the Dick
quark interaction potential VD(r) is given by

VD(r) =
1
r

− f

√
Nc

2(Nc − 1)
ln[exp(2mr) − 1]. (3)

Equation (3) is very remarkable since for large values of
r it leads to a confining potential VD(r) ∼ 2fm(2(Nc −
1))1/2)r. In this regard, we will show in this paper that
for a general gluon–dilaton coupling G(φ), the quark in-
teraction potential V (r) reads

V (r) =
∫

dr
G[φ(r)]
r2

. (4)

Such a form of the potential is very attractive. On the
one hand it extends the usual Coulomb formula Vc ∼ 1/r
which is recovered from (4) by taking G = 1. Moreover
for G ∼ r2, which by the way corresponds to a coupling
G(φ) ∼ φ−2, and W (φ) = (m2/2)φ2, m 6= 0, (4) yields
a linearly increasing interquark potential V ∼ r having
the good behavior to describe the SU(Nc) quarks con-
finement [6–8]. On the other hand (4) may also be used
to describe other non-perturbative effects associated with
higher dimension quark and gluon vacuum condensates.
Following [8], see also [9], one may extract interesting phe-
nomenological information on the dilaton–gluon coupling
G[φ] by comparing (4) to the Bian–Huang–Shen potential
VBHS(r), namely

VBHS(r) ∼ 1
r

−
∑
n≥0

Cnr
n, (5)
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where the Cn’s are related to the quark and gluon vacuum
condensates. In fact one can do better if one can put the
coupling G(φ) in the form G[φ(r)]. In this case one can
predict the type of vacuum condensates of the SU(Nc)
gauge theory which contributes to the quark–quark inter-
action potential [9]. Thus, although the derivation of the
formula (4) for the interquark potential from (1) is by itself
an important result, there remain however other steps to
be taken before one can exploit (4). As mentioned above,
a crucial step is to determine what type of couplings G(φ)
can be put in the form G[φ(r)]. In other words, for what
couplings G(φ) can one solve the equation of motion of the
scalar field φ? This is a technical problem; without solv-
ing it one cannot get V (r). Another step which remains
is to show how the effective model (1) may be got from
a more fundamental theory. If this is possible, one may
for instance justify the mass scale f introduced by hand
in (2) and (3). One might also get some information on
the axion field couplings and more generally on the mod-
uli of 10D superstrings compactified on six dimensional
compact manifolds and especially type IIB on Calabi–Yau
threefolds [10]. In trying to explore (4), we have observed
some remarkable facts among which we quote the three
following:

(1) The functional G[φ(r)], and then the potential V (r)
of (4) may be obtained from the following one dimen-
sional lagrangian:

LD =
1
2
(y′)2 + r2W (y/r) +

α

2r2
G(y/r), (6)

where y = rφ, y′ = (dy/dr)and α = g2/(16π2)
×(Nc − 1)/(2Nc) and where g is the gluon coupling
constant. In particular LD reads, for W (φ) and G(φ)
like in (2),

2LD = (y′)2 +m2y2 +
µ2

y2 , (7)

where µ = αf2.

(2) Equation (7) has a striking resemblance to the follow-
ing harmonic superspace lagrangian LEH used in [11]
in the derivation of the 4D Eguchi–Hanson metric

2LEH = (D++ω)2 +m++2
ω2 +

µ++2

ω2 . (8)

In this equation, ω is an analytic harmonic superspace
(HS) superfield taken to be dimensionless, D++ is the
HS covariant derivative and m++ and µ++ are cou-
pling constants. More details on HS tools will be de-
scribed in Sect. 3. Much more precision can be found
in [12]. For the moment note only the formal analogy
between y, dy/dr, m and µ of (7) with ω, (D++ω),
µ++ and m++ respectively. Both of models (7) and
(8) involve hermitian fields with a self-interacting po-
tential proportional to the inverse of the square of the
scalar field variable.

(3) The Dick potential (3) is viable only for non-zero mass
dilaton field exactly as in 4D N = 2 supersymmetric
theories where the scalar potential is proportional to
the mass eigenvalues of the central charges of the 4D
N = 2 superalgebra [13,5]. Recall by the way that in
4D N = 2 supersymmetric QFT, mass terms are gen-
erated by central charges. We shall see in Sects. 3 and
4 that this formal analogy between the Dick model (1)
and 4D N = 2 QFT’s is much deeper since it allows us
to derive a new model containing (1) and where the
symmetries behind the solvability of the Dick equa-
tions as well as the couplings of both the dilaton and
axion fields are manifest.

The aim of this paper is to generalize the Dick model
(1) by exploiting the formal analogy with 4D N = 2 su-
persymmetric theories formulated in HS [11] and using
known 4D N = 2 exact results. In addition to the deriva-
tion of a new model exhibiting a U(1) gauge invariance,
we give an interpretation of the mass scale f , introduced
by hand in (2), as a Kähler modulus of a blown-up SU(2)
singularity of a Calabi–Yau threefold of type II superstring
compactifications. The appearance of the local U(1) sym-
metry in the analysis of (1)–(3) has a quite interesting
consequence as it offers a possibility to incorporate in the
game the axion field χ couplings. Recall that in a Dick
model as formulated in [6], the role of the topological field
χ is ignored. We shall show in Sect. 4 how this field can
be incorporated by going to a general gauge other than
φ = φ∗.

The presentation of this paper is as follows: In Sect. 2,
we formulate the Dick problem as a one dimensional field
theory. In Sect. 3 we give general solutions including those
of [6,7]. In Sect. 4, we review briefly the building of the
Eguchi Hanson hyper-Kähler metric in harmonic super-
space. In Sect. 5 we use the formal analogy between the
Eguchi–Hanson model and our one dimensional field the-
oretical formulation of the Dick problem to determine the
dilaton couplings, the axion ones and interpret the mass
scale f as a kind of Fayet–Iliopoulos coupling. Our con-
clusion is given in Sect. 6.

2 The Dick model
as a one dimensional field theory

Following [6,7], the analysis of the Coulomb problem of
the theory (1) is based on considering a point like static
color source which in its rest frame is described by a cur-
rent Jµa = gδ(r)Caη

µ
0 where Ca is the expectation value of

the SU(Nc) generator for a normalized spinor in the color
space. These Ca’s satisfy the algebraic identity

N2−1∑
a=1

C2
a =

(Nc − 1)
2Nc

. (9)

The next step is to use the residual SO(3) space symmetry,
which remains after setting Jµa = ρaη

µ
0 , to rewrite the

equations of motion

[Dµ, G
−1(φ)Fµν ] = Jν ,
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∂µ∂
µφ =

∂W

∂φ
− 1

4
F aµνF

µν
a

∂G−1(φ)
∂φ

, (10)

into a simple form. Indeed setting F 0i
a = −gCa/(4π)∂iV ,

α = g2/(16π)(Nc − 1)/(2Nc) one finds after some easy
algebra

dV
dr = r−2G[φ], (a)

∆φ = ∂W
∂φ

+ α
r4
∂G(φ)
∂φ

. (b)
(11)

Note that (11) have four unknown field quantities; the field
φ, the interacting color potential V (r), the dilaton–gluon
coupling G(φ) and the φ potential W . To solve (11) one
has to fix two of them. For example choosing 2W = mφ2

and G(φ) as in (3), one finds

φ = φD(r) = r−1
[
αf

m
(1 − exp(−2mr))

]1/2

, (12)

VD(r) =
1
r

− f

√
Nc

2(Nc − 1)
ln[exp(2mr) − 1]. (13)

In general given G(φ) and W (φ), the color potential V (r)
can be exactly determined on solving one equation, namely
(11b). For later use, let us introduce the new dimension-
less field y = rφ and take the spherical coordinate frame
(r, θ, ϕ) to rewrite the lagrangian (1) as

L = − r2

2G(φ)
F a0rF

0r
a − r2

2
∂rφ∂

rφ

+ r2W (φ) + F a0rρa. (14)

In deriving (14), we have used the stationarity of the color
source, the SO(3) symmetry and the identity ∆(1/r) =
δ(r). Putting this equality back into (14) and using the
change of variable y = rφ together with the conventional
notation y′ = ∂ry, ∂rφ = r2∂rφ as well as (9), one gets
the lagrangian form (6). Consequently the coupling G(φ)
of (1) appears as a part of interacting potential of the one
dimensional field theory (6). From this point of view, the
finding of the interquark potential V (r) is equivalent to
solve the equation of motion

y′′ ∂LD

∂y′ + y′ ∂LD

∂y
+ ∂exp

r LD = 0. (15)

3 Solving the Dick model

First of all observe that the lagrangian (6) including
the Dick model (7) is a particular one dimensional field
theory of lagrangian

L =
1
2
(y′)2 − U(y, r), (16)

where U(y, r) is a priori an arbitrary potential. Though
simple, this theory is not easy to solve except in some

special cases. A class of solvable models is given by poten-
tials of the form

U(y) = λ2y2(n+p) + γ2y2(q−n) + δyk, (17)

where n, p, q and k are numbers and λ2 , γ2 and δ are
coupling constants scaling as (length)−2. The next thing
to note is that (17) has no explicit dependence on r and
consequently the following identity usually holds:

y′2 = U + c, (18)

where c is a constant. Actually (18) is just an integral
of motion which may be solved under some assumptions.
Indeed by making appropriate choices of the coupling λ
as well as the integral constant c, one may linearize y′ in
(18) as follows:

y′ = U1 + U2. (19)

Once the linearization in y’ is achieved and the terms
U1 and U2 are identified, we can show that the solutions
of (18) are classified by the product U1U2 and the ratio
U1/U2. In what follows we discuss briefly some interesting
examples. For convenience let us rewrite (18) as

y′2 = w0 + w1 + C0, (20)

where w0 = m2y2 and w1 is the interaction term which
we take for the moment to be the Dick interaction that is
w1 = c21y

−2, where c1 is a coupling constant. Starting from
(20), it is not difficult to see that there are two possibilities
to put it in the form (19).

3.1 First possibility: the Dick solution

This corresponds to taking w0 = U2
1 , that is U1 = my and

U2 = c1y
−1. Putting this back into (19) one gets the Dick

solution given by (12) and (13).

3.2 Second possibility: new solutions

In this case the mass term is related to the product U1U2
by

U1U2 = ±1
2
m2y2. (21)

Equation (21) cannot, however, determine U1 and U2 in-
dependently as in general the following realizations are all
of them candidates:

U1 = λyn+p, U2 = γyq−n, (22)

where the integers p and q are such that p + q = 2 and
where λγ = ±m2. A remarkable example corresponds to
taking p+ q = 1. In this case we distinguish two solutions
according to the sign of the product of λγ. For λγ = +m2,
the solution is

y(r) =
[

1
λ
tan

(
nmr√

2
+ const.

)]1/n

. (23)
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For λγ = −m2, we have

y(r) =
[
− 1
λ

tanh
(
nmr√

2
+ const.

)]1/n

. (24)

The solutions (23) and (24) have quite interesting features
inherited essentially from the features of the tan and tanh
functions. We remark that for n = 0 the solution is

y(r) = const. exp
(
λ+ γ√

2
r

)
. (25)

In the end of this section, it should be noted that one
can go beyond the above-mentioned solutions which are
just special cases of general models involving interactions
classified by the following constraint equations:

U1.U2 ∼ yk, (26)

where U1 and U2 are as in (19) and k is an integer. For
k = 0, one gets the Dick model and for k = 2 one has
solutions described in Sect. 3.2. For general values of k,
one has to know moreover the ratio U1/U2 in order to
work out solutions. For the example where

U1 = λy,

U2 = γyk−1, k integer, (27)

one can check, after some straightforward algebra, that
the solution of y is just a generalization of (12), that is

yk(r) = [rφD]2/(2−k). (28)

For k = 0, one discovers the solution (12).

4 The Eguchi–Hanson HS model

To start recall that the Eguchi–Hanson metric is a vacuum
solution of self-dual euclidean four dimensional gravity.
It is a Ricci flat hyper-Kähler metric having an SU(2) ×
U(1) isometry. There are different, but equivalent, ways of
writing this metric. A remarkable way of expressing this
metric is by using a local coordinate system exhibiting
manifestly the SU(2) × U(1) symmetry. The element of
length ds2 reads

ds2 = giajbdf ia1 df jb1 +kiajbdf ia2 df jb2 +hiajbdf ia2 df jb1 , (29)

where the metric factors are given by

giajb = εabεij − 4f2iaf2jb
fkc1 f1kc + fkc2 f2kc

, (a)

kiajb = εabεij − 4f1iaf1jb
fkc1 f1kc + fkc2 f2kc

, (b) (30)

hiajb = − 4f1iaf2jb
fkc1 f1kc + fkc2 f2kc

, (c)

together with the SU(2) isovector constraint

εab(f ia1 f
jb
2 + f ja1 f ib2 ) − λij = 0. (31)

A tricky way to derive this metric is to use the results of
4D N = 2 supersymmetric non-linear σ models. In the
harmonic superspace approach where 4D N = 2 super-
symmetry is manifest, the field theoretical model giving
the family of Eguchi–Hanson metrics reads in the super-
field language

S[ω] =
1

2k2 (32)

×
∫

dz(−4)du
[
(D++ω)2 −m++2ω2 − λ++2

ω2

]
.

In this equation ω = ω(xA, θ+, θ̄+, u) is an analytic HS su-
perfield taken to be dimensionless. D++ =

(
u+i(∂/∂u−i)

−2θ+σmθ̄+∂m
)

is the HS covariant derivative; dz−4 is
the analytic superspace measure with U(1) Cartan charge
(−4), and the couplings m++ and λ++ are given by

m++ = u+
i u

+
j m

ij , λ++ = u+
i u

+
j λ

ij , (33)

where u+
i and u−

i are the harmonic variables parameter-
izing the SU(2)/U(1) ≈ S2 sphere. We shall not use these
HS tools; we are only interested in the formal analogy with
the Dick problem. This is why we shall give only the neces-
sary material in the following. For more details on the HS
method and the derivation of the Eguchi–Hanson metric,
see [11]. Note also that the Eguchi–Hanson metric with
SU(2) × U(1) isometry corresponds to m++ = 0. Metrics
with m++ 6= 0 have a U(1) × U(1) symmetry and fall
in the family of multicenter metrics [14,15]. Let us take
m++ = 0 and sketch the main steps in putting (33) in the
form (29)–(31). In fact there are two possible paths one
may follow: First, there is a direct method which starts
from the superfield equation of motion of the hermitian
HS superfield ω,

D++2ω =
λ++2

ω3 , (34)

and uses the θ-expansion of the superfield ω, that is

ω = φ+ θ+2M (−2) + θ̄+2N̄ (−2)

+ θ+∂mθ̄+B(−2)
m + θ+2θ̄+2P (−4), (35)

where we have ignored fermions. Then one fixes N = 2
supersymmetry partially on shell by eliminating the aux-
iliary fields P (−4) and B

(−2)
m . The relevant equations are

those corresponding to the projection of (34) along the
θ+ = 0 and θ+σmθ̄+ directions, i.e.

∂++2φ = λ++2/φ3,

∂++B−2
m = 2

(
∂m − 3

2
λ++2

φ4 B(−2)
m

)
φ. (36)

The next thing to do is to find the explicit dependence
of φ and B

(−2)
m on the harmonic variables u±

i by solving
(36). Then put the solution into (33) once the integrations
with respect to θ+ and θ̄+ are performed. In other words
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put the solutions φ = φ(u±
i ), B(−2)

m = B
(−2)
m (u±

i ) into the
following component field action:

S[ω] ∼ 1
k2

×
∫

dx4du[∂++B(−2)
m ∂mφ+ ∂mB(−2)

m ∂++φ]. (37)

The last step is to integrate with respect to the harmonic
variables. Once this is done, we get the bosonic part of the
4D N = 2 supersymmetric non-linear σ model from which
one can read the Eguchi–Hanson metric in the ω represen-
tation. The second method, which interests us here, is in-
direct but it has the merit of being based on HS superfield
theory exhibiting manifestly the SU(2)×U(1) symmetry.
The main steps of this approach are as follows:
(1) Instead of working with a real superfield ω, we take a
complex superfield ω: ω̄ 6= ω.
(2) Modify the action (33) as

S[ω] ∼ 1
2k2

∫
dz(−4)du[|(D++ + iV ++)ω|2

+ λ++V ++], (38)

where V ++ is a U(1) gauge superfield. Equation (38) is
invariant under the following gauge transformations of pa-
rameter λ.

ω′ = exp(−iλ)ω, V ′++ = V ++ +D++λ. (39)

Note that V ++ has no kinetic term. It is an auxiliary
superfield which can be eliminated through its equation
of motion namely

2V ++ =
1
ωω̄

[i(ω̄D++ω − ωD++ω̄) − λ++]. (40)

For the special case where ω is real, ω̄ = ω, (40) reduces
to

V ++ = −λ++/ω2, (41)

and consequently the action (38) coincides with (33). Note
by the way that the term λ++V ++ is a Fayet–Iliopoulos
(FI) coupling.
(3) Rewrite (38) in an equivalent form by using the O(2)
notation, i.e. express the complex superfield ω = ω1 + iω2
as an O(2) doublet (ω1, ω2) and introducing two other
auxiliary superfields F++

1 and F++
2 ,

S[ω1, ω2, F
++
1 , F++

2 ] =
1

2k2

∫
dz(−4)du[(F++

1 )2

+ 2F++
1 D++ω1 + (1 ↔ 2) (42)

−V ++(ω1F
++
2 − ω2F

++
1 + λ++)].

Eliminating V ++,F++
1 and F++

2 and choosing the gauge
ω2 = 0 we reproduce the action SEH (33) with m++ = 0.
The second order action (42) is interesting since it has a
manifest SU(2) invariance rotating ωi and F++

i . To make
this invariance more explicit we make the following change
for both (ω1, F

++
1 ) and (ω2, F

++
2 ):

ω = U−
a q

+a, F++ = U+
a q

+a,

q+a = εabq+b , q+a = (q+, q̄+), ε12 = 1. (43)

Thus for both ω1 and ω2, we have ω = U−
a q

+a
I with I =

1, 2 and so on. Putting this back into (42), we get the
following action:

S =
1

2k2

∫
dz(−4)du[q̄+1 D

++q+1 + q̄+2 D
++q+2

+ V ++(q̄+1 q
+
2 + q̄+2 q

+
1 + λ++)]. (44)

This action has invariance under the following groups:

(i) the O(2) gauge group acting by

δq+I = εIJλq
+
J , δV ++ = D++λ, λ̄ = λ; (45)

(ii) the U(1) subgroup of the rigid SU(2) automor-
phism group of supersymmetry that leaves λ++ invariant;

(iii) The SU(2) Pauli–Cursey symmetry rotating q+I
and εIJ q̄+J .

Now starting from the last form of the EH action (42)
and solving the θ+ = 0 and θ+σmθ̄+ components of the
equations of motion,

D++qI − εIJV
++q+J = 0,

εIJ q̄+I q
+
J + λ++ = 0 (46)

in the Wess–Zumino gauge, one gets, by following the same
lines as described for the direct method, the EH metric
(29) and (31).

5 The Dick model revisited

In Sect. 2 we learnt that the Dick problem may be for-
mulated as a one dimensional field theory of a lagrangian
LD given by (16), namely

2LD =
(

dy
dr

)2

−m2y2 − µ2

y2 . (47)

In Sect. 3 we have shown that hyper-Kähler metrics of the
Eguchi–Hanson family can be derived from the following
4D N = 2 supersymmetric model:

2LEH = (D++ω)2 −m++2
ω2 − µ++2

ω2 . (48)

In Sect. 4 we have seen that this lagrangian is equivalent
to the following first order one, once the auxiliary U(1)
gauge superfield V ++ is eliminated through its equation
of motion:

2L′
EH = |D++ω|2 −m++2

ωω̄ (49)

−V ++(ω̄D++ω − ωD++ω̄ − µ++) + V ++2
ωω̄.

This form of LEH may also be transformed into two
other forms as shown in (42) and (44). The difference be-
tween LEH and L′

EH is that in (48) ω is hermitian whereas
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in (50) ω is complex. As we have seen, we can go from
(50) to (48) either by constraining the superfield to be
real, that is

ω2 = 0, (50)

or equivalently by keeping ω2 6= 0 and working in the
Wess–Zumino gauge:

D++V ++ = 0. (51)

Equation (51) turns on to be helpful in the derivation of
the Eguchi–Hanson metric. Now using the formal analogy
between (47) and (48), it is not difficult to see that the
LD lagrangian may be also formulated in terms of the
auxiliary fields F and F̄ as

L2 = FF̄ + F̄ ∂y + F∂ȳ + V [ξ + i(yF̄ − ȳF )], (52)

where V is a one dimensional U(1) gauge field and ξ is
a 1D constant vector explicitly breaking invariance under
space translations. Note that in this formulation, the two
scalars y1 and y2 of the complex field y = (1/21/2)(y1+iy2)
represent, respectively, the dilaton φ and the axion χ in
agreement with the requirement of F -theory and 10D type
IIB superstring and 4D N supersymmetric gauge theory.
Eliminating the auxiliary fields F and F̄ through their
equations of motion, namely

F = −(∂ + iV )y = −∇y, (a)

(53)

F̄ = −(∂ + iV )ȳ = −∇ȳ, (a)

one obtains the following first order lagrangian L1:

L1 = |∇y|2 +m2yȳ + ξV. (54)

Moreover eliminating the auxiliary U(1) gauge field V
through its equation of motion

V =
−1
2yȳ

[ξ + i(ȳ∂y + y∂ȳ)], (55)

one gets the one dimensional field theory of the dilaton–
axion system extending (7) which may be recovered from
(54) and (55) by going to the gauge fix y2 = χ = 0.
However to exhibit the effect of the axion field χ, one has
to keep χ 6= 0 and one imposes a constraint on the gauge
field V that we write as follows:

C(V, ∂V ) = 0. (56)

Using this constraint, the first order lagrangian is no longer
invariant under the change y → e−iψy and V → V + ∂ψ,
where ψ is the U(1) gauge parameter, but as a counter-
part one can work out a non-trivial solution for the axion
field χ = χ(r) by solving the conjugate where the field
V should be substituted in the equations of motion (55)
∇2y = m2y and its complex conjugate by the value V0(r)
verifying the constraint (56) and satisfying the identity
∂(ȳyV0) = 0. In the end of this study we would like to
note that the term ξV appearing in (52) plays a simi-
lar role as the Fayet–Iliopoulos term m++V ++ of the 4D

N = 2 supersymmetric Eguchi–Hanson model (33). Thus
the mass scale f introduced by hand in the Dick model
may be viewed, under some assumptions, as the scale of
breaking of the U(1) symmetry rotating the dilaton and
axion fields. Recall by the way that in general supersym-
metric gauge theories with a U(1) gauge invariance, the
FI term is generally used to break supersymmetry and/or
gauge invariance. The FI couplings are Kähler moduli of
the Calabi–Yau threefolds on which 10D type II super-
strings are compactified, and their magnitudes are of order
of the Calabi–Yau compactification scale.

6 Conclusion

Inspired by the dilaton–gluon coupling in superstring the-
ory, Dick built a field theoretical model having the remark-
able property of leading to a confining quark–quark inter-
action potential. The model is mainly a 4D SU(Nc) gauge
theory coupled to a massive scalar field φ of lagrangian (1)
and a dilaton–gluon coupling G(φ) = 1+f2/φ2, where f is
a mass scale introduced by hand. The parameter f may be
compared with the mass scale of the σ model of mesonic
theory [16]. The confining phase of Dick model is parame-
terized by the non-zero mass for the dilaton and the non-
vanishing f . In trying to analyze the potential VD(r) we
have observed that the Dick problem has a perfect formal
analogy with the problem of building the Eguchi–Hanson
metric in 4D N = 2 supersymmetric harmonic superspace.
This formal similarity appears at several levels. In the In-
troduction we have quoted some of these striking analo-
gies. For example, vanishing masses for both Dick and
Eguchi–Hanson scalar fields lead to trivial potentials. An-
other example is that the mass scale f which is introduced
by hand and interpreted as a compactification scale by
Dick plays a similar role as the 4D N = 2 FI coupling
appearing in the Eguchi–Hanson model, (33). Recall by
the way that now it is well established that the FI cou-
plings are of the order of the compactification scale since
they are just the Kähler moduli of the Calabi–Yau three-
fold on which the 10D type II superstrings are compact-
ified. To understand the striking similarity between the
Dick problem and the Eguchi–Hanson one, we have re-
formulated the Dick problem as a one dimensional field
theory. As a consequence we have found a general formula
for the interquark potential V (r) which of course depends
on the nature of the dilaton–gluon G[φ] as shown in (4).
The beauty of this formula is not only that it extends the
Coulomb and Dick theory but also that it can be com-
pared with known parameterizations of the confinement,
especially the contribution of the quark and gluon vacuum
condensates. From this point of view, the Dick model as
we have formulated it may be viewed as a phenomenolog-
ical theory modeling the non-perturbative contributions
responsible for confinement. In this regard a more explicit
analysis will be presented in [17].

Moreover, having at hand the 1D field theoretical for-
mulation of the Dick model and the analogy with the 4D
N = 2 Eguchi–Hanson model, we have shown how the ax-
ion field may be incorporated in the game in agreement



M. Chabab et al.: On the confining potential in 4D SU(Nc) gauge theory with dilaton 549

with the requirement of F -theory and 10D type IIB su-
perstrings according to which the dilaton and the axion
form a complex field. In our formulation the dilaton–axion
model is represented by a 1D U(1) gauge theory of the la-
grangian (52). The U(1) ≈ SO(2) symmetry rotates the
dilaton and the axion fields and allows one to interpret
the Dick mass scale as a kind of FI coupling.
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